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Interface roughening dynamics: Temporal width fluctuations and the correlation length
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In this work we study experimentally and numerically the temporal width fluctuations obtained in kinetic
roughening of single interfaces. This fluctuative behavior, which results from competing mechanisms in the
interface growth process, is shown to contain information on the growth process of the specific interface. We
define a measure of the temporal interface width fluctuations in order to extract the correlation length of the
interface from the fluctuating data. We study numerically the quenched Kardar-Parisi-Zhang (QKPZ) equation
for single interfaces in order to assess the role of the different mechanisms, such as normal growth and surface
tension, on the fluctuations. We analyze experimental data of mercury droplets spreading on various metal
films (silver and gold) in various thicknesses, as well as data of water spreading on paper (imbibition), in order
to demonstrate the validity of our method in a wide range of growing interfaces.
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I. INTRODUCTION

During the past decades, many scientists of different dis-
ciplines were extensively investigating the dynamics and ge-
ometry of growing interfaces using the concepts of self-
affine and fractal scaling [1-28]. Among the possible
applications of kinetic interfacial roughening one can men-
tion processes such as imbibition, wetting, burning, and frac-
ture [6]. In this paper, we study the spatiotemporal dynamics
of a growing interface, following a series of experimental
studies of spreading mercury droplets on thin metallic films
[26-28]. Such spreading processes are of great interest and
importance in material science, optics and technology, with a
diverse range of applications, e.g., soldering, typing and
painting, gluing, condensation of droplets on solid substrates,
and coating of glasses by photoresist liquids in photolithog-
raphy processes [29-36].

Droplet spreading on metallic films is very complicated
[29-31]. Tt involves the motion of a contact line due to hy-
drodynamic forces as well as a chemical reaction between
the mercury and the solid metal. In a different publication
[32] we have recently addressed another aspect of this com-
plicated phenomenon, which is the dynamic three-
dimensional shape of the spreading droplet, as obtained by
the optical microscope in a newly developed, time-resolved,
technique. However, in this paper we focus on the interface
characteristics (roughness and growth) of the spreading phe-
nomenon, as observed by a microscope top view. These char-
acteristics are expected to capture the essential physical fea-
tures of the entire system [6], and have not been studied
earlier for spreading droplets.

A possible theoretical treatment of a propagating self-
affine interface is based on constructing a continuum differ-
ential equation for describing the motion of the interface.
The simplest nonlinear Langevin equation for a local inter-
face growth is the Kardar-Parisi-Zhang (KPZ) [7] equation:

oh A
o vW2h + E(Vh)2 + 7(x,1), (1)

where h(x,1) is the interface height at position x at time 7, v
is the surface tension, A\ is proportional to the velocity nor-
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mal to the interface and 7 is a noise term. A possible variant
of the KPZ equation is QKPZ (Quenched disorder KPZ)
[4,5], which assumes that the noise term depends on the spa-
tial coordinates rather than the time, i.e., 7(x,h) instead of
7(x,1). Analysis of these equations under certain conditions
can predict sets of scaling exponents [8]. In particular, the
width W of the interface, which is formally defined as

WAL, 1) = (h(x,0)%) = (h(x,0))?, (2)

has been assumed to obey a power law in time ¢ and distance
L, with two scaling exponents, «, the roughness exponent
and S, the growth exponent, defined as

P, t<t,
W~ . 3)
LY, t>1,,

where t,~L%F, and L is a window varying from the smallest
length scale (say a single lattice unit) to the system size L.

Although many theoretical studies [1-11] (analytical, nu-
merical, or simulations of discrete models) study both the
roughness and the growth exponents, only a few experimen-
tal works were able to measure the growth exponent S
[12-22,26-28]. While the roughness exponent & was mea-
sured or calculated in order to study properties of the system,
such as the characteristic correlation length of the interface,
the growth exponent 8 was mainly studied in order to com-
plete the classification of the system, together with the
roughness exponent «, into a specific universality class. Ex-
amples of such universality classes are a+a/B=2 in isotro-
pic systems [8,12,26-28], a/B=4 in the surface diffusion
universality class [4], @=g in some pinned systems [23] and
also a+a/B=4 [24] and a/B=2 [25].

Among the few works that did calculate the growth expo-
nent B [12-22,26-28], only very few presented actual pic-
tures of interface lines and their time evolution
[12,13,15,18-20,27]. Most of these studies referred to a fi-
nite number of growing interfaces, sometimes a single inter-
face only. It was shown that one can describe the interface
width as growing monotonically with time, obeying a stan-
dard power-law behavior with an exponent 8 [15-20,26-28].
However, a closer look at these results shows that there exist
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fluctuations in the log-log plots of W as a function of time.
This was pointed out by Balankin et al. [21] who performed
paper-wetting experiments, as well as by Soriano er al. [22]
who measured interfacial roughening in Hele-Shaw flows.
They attributed the strong temporal fluctuations in W(z) to
the details of the disorder configuration in their experimental
systems, and commented that the fluctuations should be
smoothed out when more samples are averaged.

In this paper we show, experimentally and theoretically,
that this behavior always emerges when a finite number of
interfaces is involved, as may be the case, e.g., in experi-
ments or industrial applications. By studying the KPZ equa-
tion we show that this unique feature of the dynamical
growth results from the competition between the two mecha-
nisms: the normal growth, which tends to roughen the inter-
face, and the surface tension forces, which tend to smooth it.
This competition averages out when an infinite number of
interfaces is taken into account. However, for given inter-
faces, in particular for single interfaces, these fluctuations
contain hidden information on the specific system and its
growth characteristics, in particular the correlation length.

For many interface growth processes there exists a typical
length scale of which below and above it different mecha-
nisms govern the dynamics and growth of the interface. This
length, also known as the correlation length [1-5,11], or,
similarly, the lateral length scale [6], represents the length
scale of collective growth of the interface. The growth of
portions of the interface above this length is not correlated.
An estimation of the correlation length is usually obtained
using the roughness properties of the interface. The rough-
ness exponent « is related to the height-difference correla-
tion function on the interface [1],

C(L) = [{(h(x) = h(x"))?),]" ~ L7, (4)

where |x—x’|=L. Values of 0.5<a<1 represent correlated
motion, while values of @~0.5 represent a random, non-
correlated motion (e.g., random walk) [1-5]. In other words,
this length fixes the maximum range of correlated roughness
[6]. Therefore, the correlation length is a crossover point
between @>0.5 and a<0.5 in the W(L) plots [Eq. (3)]. In
the following we show how to extract the correlation length
from the experimental data in much earlier stages of the in-
terface growth process, based on the temporal growth fluc-
tuations.

The paper is organized as follows. In Sec. I we present
the experimental setup and describe in detail the data analy-
sis procedure from which we extract the correlation length.
In Sec. III we study numerically the QKPZ equations and
show the effect of the nonlinear growth and the surface ten-
sion parameters on the size of the fluctuations. We also show
how the fluctuations vanish when more realizations are taken
into account. In Sec. IV we show data analysis of other ex-
perimental systems where significant experimental param-
eters, such as the film thickness and type, are changed. In
Sec. V we apply our method to other experimental data in the
literature (water imbibition in paper) in diverse time and
length scales. This allows us to summarize, in Sec. VI, the
generality of our approach.
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FIG. 1. A schematic view of the experimental system.

II. EXPERIMENTAL RESULTS AND DATA ANALYSIS

The experimental system is shown in Fig. 1. Silver (Ag)
films were either deposited on glass microscope slides by
vacuum evaporation (thickness range 2000—4000 A), or
were polished by diamond powder (thickness 0.1 mm). Gold
(Au) thin films (1500 A) were produced as well using the
vacuum evaporation technique. Small droplets of mercury
(Hg) (150 pm in diameter) were placed on these metal sub-
strate surfaces. The spreading process of the Hg droplet on
the metal surfaces has been monitored using an optical mi-
croscope equipped with a differential interference contrast
(DIC) system. The Hg front propagation has been recorded
by a video camera. The duration of the experiments was
several minutes. The images were analyzed in order to deter-
mine the geometrical and dynamical properties of the front,
according to Eq. (3). The results for the roughness and
growth exponents of the spreading process on thin Ag films
have been reported in [26,27], while the corresponding re-
sults for spreading on Au films can be found in [28].

In order to calculate the dynamical growth properties of
the interface width, according to Eq. (3), one has to pick an
arbitrary window size L along the interface line. This win-
dow is used repeatedly until the entire interface is covered.
The height of the interface in each window is measured, and
the width of the interface is finally obtained as the average
height of all these heights. This procedure is repeated for the
growing interface at every time . In Fig. 2 we show typical
results for W(z) for two different single processes. In Fig.
2(a) the metal film thickness is 2000 A, whereas in Fig. 2(b)
the film thickness is 0.1 mm. In both cases one can fit a
straight line in order to obtain the single-interface growth
exponent 3, but the fluctuations are evident and cannot be
ignored. This fit has been found to be robust with respect to
these fluctuations, and independent of the chosen window
size. In Fig. 3(a) we replot the results of Fig. 2(b) for 8
different window sizes L, ranging from 3 to 25 um
(10 to 80 pixels). As can be seen, the single-interface growth
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FIG. 2. The function W(z) calculated from a single experiment’s
data in the Hg-Ag system. (a) Ag thickness is 2000 A and window
size L is 10 wm. (b) Ag thickness is 0.1 mm and window size L is
18 um. Both log-log plots show a nonmonotonic function riding
over a straight line. The slope of this line is the growth exponent 3
whose values are indicated.

exponent 3 is independent of the window size L. Moreover,
the fluctuations occurrence times are also independent on L.
This implies that the fluctuations reflect an intrinsic property
of this single system.

It should be emphasized that fitting a straight line to the
fluctuative data of a single interface stems from the scaling
law given in Eq. (3), which is expected to be valid for the
sample-averaged width W [21,22]. The slope of the straight
line when a single interface is concerned should be regarded
as a single-interface growth exponent.

In order to gain insight on the origin of the systematic
temporal fluctuations, one should check the temporal history
of the interface growth process. In Fig. 3(b) we follow, in a
series of successive snapshots, a few stages in this process in
a given interface portion of total size Ly=35 um
(110 pixels). We mark these snapshots, taken at times
60—-105 s with intervals of 5 s, by A-J. Snapshots A, C, H, J
correspond to the times indicated on Fig. 3(a). One can
clearly see the local increase of the interface width in time C,
with respect to time A, and the local decrease of the width
around H, followed by another increase in J.

The specific shape of these fluctuations varies from
sample to sample. Thus, these sample-dependent fluctuations
must contain hidden physical characteristics of the specific
system under consideration. In order to extract this informa-
tion we define a new measure of the width fluctuations,
based on the difference between successive minima and
maxima in the log-log plot of the width W vs the time ¢.
Formally, this measure, A log W, will be defined as
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FIG. 3. (a) The function W(z) in the thicker Hg-Ag system [Ag
thickness 0.1 mm as in Fig. 2(b)] for several window sizes L, vary-
ing from 3 to 25 um (10 to 80 pixels). All slopes are approxi-
mately equal to 0.60. Chosen points on the graph, belonging to
extreme points, are marked by A, C, H, J. (b) A series of successive
snapshots taken at times 60—105 s with intervals of 5 s. We mark
these snapshots by A-J, which correspond to the times A-J indi-
cated in (a). The total horizontal size is 35 wm (110 pixels). One
can clearly see the local increase of the interface width in times C,
and the local decrease of the width around H, followed by another
increase in J.

Ei; M, — myj|

Alog W= % (5)
where M,'s are local maxima and m's are local minima in
the plot of log W vs log ¢ (Fig. 2). We take i=j in order to get
the “peak to peak” deviations from the straight line. Next, if
we plot this measure A log W, as a function of the window
size L [Fig. 4(a)], it can be seen that the larger is L, the larger
are the fluctuations A log W. This is intuitively clear, since
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FIG. 4. (a) The measure of the width fluctuations A log W
[Eq. (5)] as a function of the window size L. A crossover is marked
with an arrow for L=8.1 um (27 pixels). (b) The roughness expo-
nent a, as obtained from the log-log plot of W(L) at the end of the
experiment. The crossover occurs at the same characteristic length
L=8.1 um (27 pixels) as in (a). The roughness exponent was found
to be @=0.77 below the crossover.

smaller windows can only reflect smaller, local fluctuations.
Moreover, the plot of Alog W vs L reveals a crossover be-
havior below and above a characteristic value of the window
size L. A linear trend line is fitted to the data of the plot of
Alog W vs L, starting at the smaller L’s [see Fig. 4(a)]. We
define the crossover point, Lg, as the point in which the
square of the sample-correlation-function of the linear fit,
denoted by R? [37], becomes smaller than 0.99. In the par-
ticular system shown in Fig. 4(a), this characteristic value is
about 8.1 um (27 pixels).

In general, when the spreading process ends, the function
W(L) (the graph of the roughness exponent a) exhibits a
crossover behavior at some window size L, [Fig. 4(b)] (see,
e.g., [12]). This typical window size, L, is the correlation
length of the interface, of which below, points on the inter-
face advance ahead in correlation with their neighbors.
Above this point there is no correlation and thus the value of
the slope (i.e., @) goes to 0.5, which, as mentioned earlier,
represents a random, noncorrelated motion. Our results for
the characteristic length (Lg) obtained from the width fluc-
tuations were found to be consistent with this correlation
length (L,), obtained from the roughness exponent crossover
behavior. This means that this typical length can be obtained
at much earlier stages of the process, through the fluctuations
in the time-dependent growth function.

It is interesting to note that Fig. 4(b) indicates that W(L) is
perfectly smooth, even for a single interface, unlike the be-
havior of W(¢). Experimental data of W(L) in the literature
[3,17-20,26,28,38,39] also indicate a smooth function from
which one obtains the roughness exponent a. The difference
between W(L) and W(¢) results from the fact that W(L) is
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plotted for a given time, and does not describe a dynamic
quantity. Thus the fluctuative behavior of W(z) is a unique
characteristic of the dynamically growing interface.

III. QKPZ EQUATION: NUMERICAL CALCULATIONS

What is the physical interpretation of such a fluctuative
behavior? In order to answer this question we solved the
QKPZ equation numerically for a single interface. This ver-
sion of the KPZ equation resembles our experimental system
in the sense that surface film defects induce time-
independent quenched noise into the system [27]. It should
be emphasized that the relatively simple description of the
QKPZ equation cannot fully describe our complicated sys-
tem [6]. However, comparing our results with the QKPZ
interface dynamics will allow us to gain insight on the basic
physics behind such temporal fluctuations.

Our numerical system consisted of a (1+ 1)-dimensional
interface of 500 points (pixels), initially flat. Each point in
the lattice was initialized with a random noise value, chosen
from a distribution with zero mean. Both Gaussian and uni-
form distributions were used. We have then solved numeri-
cally the QKPZ equation for this system [Eq. (1) with
quenched noise]. We used the forward time centered space
(FTCS) scheme [40] for the numerical integration with time
intervals of Ar=0.1 and Ar=0.05, for a wide range of the
parameters set (\,v). Interface characteristics were calcu-
lated using the method described above.

In Fig. 5(a) we show the result for the width W as a
function of time #, for a solution of Eq. (1) for a single
interface, with A=0.1, v=0.15 and uniformly distributed
quenched noise in the range (-1, 1). The fluctuations patterns
are similar to those obtained in the corresponding experi-
mental plots in Figs. 2 and 3(a). From the existence of such
fluctuations in the relatively simple case of the QKPZ equa-
tion, we infer that the nonmonotonic growth of the width
W(r) is a fundamental feature of interface roughening dy-
namics. It results from the competing mechanisms in the
growth process, i.e., the nonlinear growth (represented by \)
and the surface tension (v).

When a local gradient in the interface height occurs, due
to the noise, a hump in the interface is created. Then the
nonlinear term tends to increase its size, whereas the surface
tension tends to decrease it. The result of this competition is
the local growth fluctuations, which are reflected in the over-
all temporal behavior of the width W as a function of time. It
should be noted that the surface tension mechanism is acting
in a “time delay” relative to the nonlinear growth, because it
responds to the growth after it has happened, and this is the
reason for the nonmonotonic behavior: advance due to the
nonlinear term, and then regression due to the surface ten-
sion.

In Fig. 5(b) we show the plot of A log W [the fluctuations
measure, as was defined in Eq. (5)] as a function of the
window size L, from which one can obtain the correlation
length (in this system L=70 pixels). As in the experimental
case, this value is verified by the crossover in the plot of W
as a function of L [Fig. 5(c)] at the end of the interface
growth process, which also occurs around L= 70 pixels.
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FIG. 5. (a) A log-log plot of the width W as a function of ¢,
obtained from the numerical solution of the QKPZ equation for a
single interface in the FTCS method, with A=0.1, v=0.15, for vari-
ous window sizes L=70,80,100,120,150,200,230 pixels, repre-
sented by the different lines (from bottom to top). The nonmono-
tonic function over the straight line B=0.60 resembles the
experimental curves in Fig. 3(a). (b) The measure of the width
fluctuations A log W as a function of the window size L, as obtained
from the data in (a). A crossover is marked with an arrow for
L=70 pixels. (c) A log-log plot of the width W as a function of the
window size L. The slopes represent the values of the roughness
exponent «, below and above the same crossover length
L=70 pixels as in (b). The roughness exponent was found to be
a=0.72 below the crossover.

This behavior is typical for a single interface with a given
set of the parameters (X, »). In order to study a wide range of
the parameter space, we performed extensive data analysis.
In these calculations, a slightly different method was used for
the fluctuations size measure. We calculated the linear fit for
the nonmonotonic graph of log W vs log ¢, and the deviations
from the straight line. We averaged the square of these de-
viations over the time series and obtained the characteristic
value ¢, defined as

b= \r’/<(log w; —log wﬁmmr)2>i, (6)

where w; is the width of the interface at time 7, and log wfi”‘"“’

is the value of the linear fit for time i. The brackets denote
average over time.
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FIG. 6. The fluctuations size ¢ [defined in Eq. (6)] as a function
of the ratio of the parameters v, \. The fluctuations size is maximal
when v~ \.

We studied different sets of parameters (\,v) and two
different noise distributions (uniform and Gaussian). We
measured the correlation length from the early-time fluctua-
tions as well as from the roughness exponent behavior at
long times, and in all cases these two measures were consis-
tent, similarly to the findings presented in Fig. 5. However,
we found that the values of the parameters A, v do influence
the size of the fluctuations. In Fig. 6 we show that the fluc-
tuations size ¢ [Eq. (6)] exhibits a noticeable maximum
when v~ \, namely, when the two opposing mechanisms are
of the same order of magnitude. This supports the argument
that the interface width fluctuations are due to this competi-
tion.

It is clear that the particular correlation length provides an
estimate for the average correlation length in all the similar
interfaces produced under similar conditions. It also allows
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FIG. 7. (a) Numerical data for the width as a function of time (in
a log-log scale), with »=0.1, A=0.1, and L=160 pixels, for (i) a
single interface; (ii) the average of 4 interfaces, and (iii) the average
of 8 interfaces. (b) Experimental data of the 2000 A Ag system with
L=50 pixels (3 wm): The width as a function of time (in a log-log
scale), for (i) a single interface and (ii) the average of 4 interfaces.
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FIG. 8. (a) The function W(¢) in the 2000 A Hg-Ag system for
several window sizes L, varying from 15 to 120 pixels, which are
about 1 to 7.5 uwm. All slopes are approximately equal to 0.39. (b)
The measure of the width fluctuations A log W [Eq. (5)] as a func-
tion of the window size L. A crossover is marked with an arrow for
L=32 pixels (1.9 um). (c) The roughness exponent a, as obtained
from the log-log plot of W(L) at the end of the experiment. The
crossover occurs at almost the same characteristic length
L=28 pixels (1.7 wm) as in (b). The roughness exponent was found
to be @=0.80 below the crossover.

one to provide an estimate of the sample-averaged growth
exponent 8. The numerical calculations allow us to perform
multiple runs, in order to get a better sense of the run-to-run
divergence. In Fig. 7(a) we show what happens when more
realizations of single interface growth are taken into account.
In this figure the width of the interface is averaged over 4
and over 8 realizations, and it is shown that even for a small
number of interfaces the fluctuations tend to vanish. The
interface width behaves then according to the scaling law
W~ t#, which gives the straight line in the log-log plot. The
size of the fluctuations of the average interface is very small
relative to the fluctuations size of a single interface and it is
almost independent of L. Figure 7(b) is similar to Fig. 7(a)
but for experimental data of the 2000 A Ag system.
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IV. MORE EXPERIMENTAL DATA

In order to substantiate the validity of our method in a
wide range of growing interfaces, we have performed more
experimental studies, in which we have changed some of the
significant experimental parameters, such as the thickness of
the metal film, or the type of the metal itself.

A. Hg-Ag system with various Ag thicknesses

The dynamics and growth of the propagating fronts, ob-
served when small Hg droplets spread on Ag films, depend
on different mechanisms [26,27]. One of these mechanisms
is the chemical reaction between the droplet and the surface,
which may be highly influenced by the surface’s structure of
the Ag layer, as well as its total thickness. For this reason we
have investigated both thick Ag foils of 0.1 mm, polished by
diamond powder [see Figs. 2(b), 3, and 4], as well as thinner
Ag films (2000-4000 A) produced using vacuum evapora-
tion. These two methods yield different surface structures. In
the following we refer to two different thicknesses of the
thinner film category: 2000 A and 4000 A. In these experi-
ments 1 pixel corresponds to about 0.061 wm (different
magnitudes were used for different experiments).

In Fig. 8 we show the results of a single spreading process
on a 2000 A Ag film. As can be seen [Fig. 8(a)], the value of
B is independent of L and the large fluctuations are evident.
It can be seen that the crossover point obtained in the graph
of Alog W [Fig. 8(b)] at 32 pixels (1.9 wm), is very close to
the crossover point in the graph of the roughness exponent «
at the end of the spreading process [Fig. 8(c)] at 28 pixels
(1.7 pm). Similarly, Fig. 9 summarizes the data of a single
experiment of the 4000 A system. It can be seen that the
crossover point obtained in the graph of A log W [Fig. 9(b)]
at 15 pixels (0.9 um), is very close to the crossover point in
the graph of the roughness exponent « at the end of the
spreading process [Fig. 9(c)] at 14 pixels (0.85 wm).

We have thus shown that our method is quite accurate in
estimating the correlation length of a single interface. We
will next show that this correlation length can be used as the
correlation length of the entire class of systems under study.
For example, we have performed four different experiments
for the 2000 A Ag thickness system, one of which is shown
in Fig. 8. The growth exponent for these four systems has

TABLE I. The values of the correlation lengths observed in the
graph of a, L,, compared to the values of the characteristic length
scales observed in the graph oof Alog W s L, Lg, for four different
single interfaces of the 2000 A Ag system. All values are in um.

No. of experiment L, Lg

1 1.7 1.9

2 4.6 3.9

3 3.9 39

4 1.5 1.4
Average 29+1.3 2.8+1.1
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FIG. 9. (a) The function W(¢) in the 4000 A Hg-Ag system for
several window sizes L, varying from 15 to 120 pixels, which are
about 1 to 7.5 wm. All slopes are approximately equal to 0.42. (b)
The measure of the width fluctuations A log W [Eq. (5)] as a func-
tion of the window size L. A crossover is marked with an arrow for
L=15 pixels (0.9 um). (c) The roughness exponent a, as obtained
from the log-log plot of W(L) at the end of the experiment. The
crossover occurs at almost the same characteristic length
L=14 pixels (0.85 um) as in (b). The roughness exponent was
found to be @=0.80 below the crossover.

been found to be $=0.42+0.04. Table I summarizes the re-
sults for the characteristic lengths. For each ofthe single runs
the value of the correlation length taken from the graph of «
is almost equal to the corresponding length scale observed in
the A log W vs L graph. When averaging the four cases we
get L,=48+22 pixels (2.9+1.3 um) and Lz=47+18 pixels
(2.8+1.1 um). The somewhat large standard deviations re-
veal the sample-to-sample fluctuations. However, the similar-
ity between the results, in each single run and on the average,
substantiates our method, and yields a reliable estimate for
the correlation length.

B. Hg spreading on Au (gold) films

The spreading process of Hg droplets on thin gold films
[28] differs from the silver case by two major aspects: (i) The
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FIG. 10. (a) The function W(z) in the 1500 A Hg-Au system for
several window sizes L, varying from 10 to 80 pixels which are
about 1.6 to 12.8 um. All slopes are approximately equal to 0.76.
(b) The measure of the width fluctuations A log W [Eq. (5)] as a
function of the window size L. A crossover is marked with an arrow
for L=54 pixels (8.5 um). (c) The roughness exponent «, as ob-
tained from the log-log plot of W(L) at the end of the experiment.
The crossover occurs approximately at the same characteristic
length L=45 pixels (7 um) as in (b). The roughness exponent was
found to be @=0.85 below the crossover.

chemical reaction between the droplet and the surface, which
plays a major role in the dynamics of the interface, is ex-
tremely different [28]; (ii) the roughness of the surfaces, gold
and silver, prior to the Hg deposition is different. In order to
estimate quantitatively the structure of the surfaces, atomic
force microscope (AFM) measurements were carried out.
They show that both surfaces have a pinned-shape structure.
However, while the average pin height of the silver surface is
200 A and its average pin width (at the half height) is
1000 A, the corresponding results for the gold surface are
100 A (height) and 500 A (width), namely, the gold surface
structure is different.

Therefore the Hg-Au system can be considered as a to-
tally different system. Moreover, the values obtained for both
scaling exponents, & and B, which were found to be much
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higher comparing to the silver systems [28], attribute this
system to a different category as well. Similarly to Figs. 5, 8,
and 9, we show in Fig. 10 data of mercury droplet that
spreads on a thin gold film. The value of 8 was found to be
B=0.76 with a standard deviation of 0.03 between similar
experiments. The correlation length, L,, obtained by the
crossover behavior of the roughness exponent («) was found
to be 45 pixels (7 um) whereas the corresponding length
scale observed in the A log W vs L graph, Lg, was found to
be 54 pixels (8.5 um). Therefore we conclude that our
method yields a reasonably well estimate for the correlation
length in this similar, but different, system.

V. IMBIBITION PROCESS

How general is our approach? As mentioned above, apart
from the recent experiments by Balankin et al. [21] and So-
riano et al. [22], there are very few plots of the function W(z)
in the literature [15-19]. These experiments have been per-
formed for a wide spectrum of growing interfaces, such as
growth of thin metal layers by vacuum evaporation [15-17],
magnetic domain-wall roughening in alloy films [18] and
imbibition of water on paper [19]. Most of these experimen-
tal results are for single interfaces. The corresponding log-
log plots have been fitted to a growth exponent (3, while
ignoring the fluctuations that did appear in all of them, in
various magnitudes. This neglect can sometimes be justified,
as the magnitude of the fluctuations, determined by the pa-
rameters \ and v in the relevant KPZ equation, can be small
(see Fig. 6).

In Ref. [19], Family er al. have made an imbibition ex-
periment with water spreading on paper. In their Fig. 2, they
show the growing interface in a sequence of 11 different
times from 450 s up to 7200 s (2 h). We have analyzed their
data in order to obtain the growth and roughness exponents,
and calculated both W(z) and W(L) from their data (Fig. 11).
We have found that indeed, W(r) exhibits the expected non-
monotonic behavior [Fig. 11(a)]. Moreover, the correlation
length emerging from the plot of A log W vs L [Fig. 11(b)] is
similar to the length scale emerging from the crossover in
W(L) [Fig. 11(c)]. This length scale is about 18 pixels
(9 mm). Their W(z) plot for another single experiment, with
another type of paper (their Fig. 4), also exhibits the same
nonmonotonic behavior discussed above. The time and
length scales of this experiment differ by a few orders of
magnitude from our spreading experiments described above.
Thus, it confirms that our method can be applied to a wide
range of length and time scales.

VI. SUMMARY

In summary, we have investigated the special features of
single kinetic roughening processes. The width growth func-
tion W(z) for a single interface exhibits temporal fluctuations
which result from the competition between normal growth
and surface tension forces. This claim was verified using
numerical solutions of the QKPZ equation for a wide range
of its parameters. We have shown that the size of the fluc-
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FIG. 11. (a) The function W(z) calculated from the data in Fig. 2
of Family et al [19], for window sizes L varying from
20 to 120 pixels, which are about 10 to 60 mm. The non-
monotonic function is riding over the straight line (slope of about
0.35). (b) The fluctuation measure Alog W as a function of the
window size L. A crossover is marked with an arrow for
L=18 pixels (9 mm). (c) The roughness exponent «, calculated
from the upper interface (7200 s) in Fig. 2 of [19]. A crossover is
marked with an arrow for the same length scale L=18 pixels
(9 mm) as in (b). The roughness exponent was found to be
a=0.76 below the crossover.

tuations contains important information, which allows one to
obtain a characteristic length in the system. We have pre-
sented a method to extract this length from the data and
showed that it is valid for a wide range of systems, ranging
from very small scales (mercury spreading on thin silver and
gold films) up to large scales (water spreading on paper). We
are currently studying the fluctuations and the correlation
length as a function of the metal film surface roughness.
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